换一批

进制转换

计算机技术中的常见进制有二进制、八进制、十进制、十六进制,进制转换的主要作用是利用符号进行计算。

经验文章 概述

  进制转换是人们利用符号来计数的方法。进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指,进位制中每一固定位置对应的单位值。

  进制转换的本质(进制转换原理)我们知道十进制转换成R进制用短除法,但是为什么用短除法呢?请往下看。“数制”只是一套符号系统来表示指称“量”的多少。我们用“1”这个符号来表示一个这一“量”的概念。自然界的“量”是无穷的,我们不可能为每一个“量”都造一个符号,这样的系统没人记得住。所以必须用有限的符号按一定的规律进行排列组合来表示这无限的“量”。符号是有限的,这些符号按照某种规则进行排列组合的个数是无限的。十进制是10个符号的排列组合,二进制是2个符号的排列组合。在进行进制转换时有一基本原则:转换后表达的“量”的多少不能发生改变。二进制中的111个苹果和十进制中的7个苹果是一样多的。十进制中的数位排列是这样的…… 万 千 百 十 个 十分 百分 千分……R进制中的数位排列是这样的……R^4 R^3R^2 R^1 R^0 R^-1 R^-2 R^-3……可以看出相邻的数位间相差进制的一次方。以下部分来源:知乎网友进制这事儿,说到底就是位值原理,即:同一个数字,放在不同的数位上,代表不同大小的“量”。例如:十进制中,百位上的1表示100,十位上的1表示10。任何进制中,每个数都可以按位权展开成各个数位上的数字乘以对应数位的位权,再相加的形式,如:

  十进制的123=1×100+2×10+3×1

  十进制的9876=9×1000+8×100+7×10+6×1

  问:为啥相应的数位是1000、100、10、1?为啥不是4、3、2、1?

  答:十进制,满十进一,再满十再进一,因此要想进到第三位,得有10×10;第4位得有10×10×10

  这样我们就知道了:对10进制,从低位到高位,依次要乘以10^0,10^1,10^2,10^3……,也就是1、10、100、1000

  对2进制,从低位到高位,依次要乘以2^0,2^1,2^2,2^3……,也就是1、2、4、8、……

  下面我们开始转换进制(以十进制换成二进制为例):

  原来十进制咱们的数位叫 千位、百位、十位……

  现在二进制数位变成了八位、四位、二位……

  模仿上面十进制按位权展开的方式,把二进制数1011按权展开:1011=1×2^3+0×2^2+1×2^1+1×2^0=1×8+0×4+1×2+1×1=8+2+1=11

  接下来我们进行十进制往二进制的转换:

  比较小的数,直接通过拆分就可以转换回去

  比如13,我们把数位摆好八位、四位、二位,不能写十六了,因为一旦“十六”那个数位上的符号是“1”,那就表示有1个16,即便后面数位上的符号全部是“0”,把这个二进制数按权位展开后,在按照十进制的运算规律计算,得到的数也大于13了。那最多就只能包含“八”这个数位。 13-8=5,5当中有4,5-4=1

  好啦,我们知道13=1*8+1*4+0*2+1*1 把“1”、“1”、“0”“1”这几个符号放到数位上去:八位、四位、二位、一位

  1 1 0 1

  于是十进制数13=二进制数1101

  现在你按照书上说的短除法来试试,会发现它和你凑数得到的结果刚好是一样的,为什么短除法可以实现进制的转换呢?为什么每次要除以进制呢?为什么要把余数倒着排列呢?

  想要知道其中的道理的话,请仔细品味以下的递归原理(不知道递归没关系):

  (1)一个十进制数321的末尾是1,意味着一定是……+1,省略号部分一定是10的倍数,所以一个十进制数末尾是1意味着十进制数除以进制10一定余1。所以第一次除以10之后的余数,应该放在十进制的最后一个数位“个位”,也就是说个位上的符号是1。类比,一个二进制数111(注意,数值不等于上面十进制的111)末尾是1,意味着一定是……+1,前面的省略号部分都是2的倍数。所以一个二进制数末尾是1,意味着它对应的十进制数除以进制2一定余1。所以第一次除以2之后的余数,应该放在二进制的最后一个数位“一位”,也就是说一位上的符号是1。(2)如果一个十进制数321“十位”是2,我们希望把它转换为(1)的情况。那么我们把这个十进制数的末尾抹掉,也就是减去“个位”上的1,再除以进制10,得到32。这样原来“十位”上的“2”就掉到了“个位”上。再把32做(1)的处理。类比,如果一个二进制数111“二位”是1,我们希望把它转换为(1)的情况,那么我们把这个二进制数的末尾抹掉,也就是减去“一位”上的1,再除以进制2,得到11。这样原来“二位”上的“1”就掉到了“一位”上。再把11做(1)的处理。总结:其实这个过程就是把各个数位上的符号求出来的过程。现在你应该可以回答以下问题了:为什么短除法可以实现进制的转换呢?为什么每次要除以进制呢?为什么要把余数倒着排列呢?R进制转换成十进制就是按权位展开,把展开式放到十进制下,再按照“十进制”的运算规律计算。因为是十进制,所以就允许使用2、3、4、5、6、7、8、9了。所以2的n次方就不用写成指数,而可以用另外的八个符号来表示了。


相关文章


    Notice: Undefined index: newRealte in /home/www/www.tulaoshi.com/releases/release-78/cache/smarty/ced17fe8327d76146ff61d7cc614513d622bb215.file.tag.html.php on line 258

    Notice: Trying to get property of non-object in /home/www/www.tulaoshi.com/releases/release-78/cache/smarty/ced17fe8327d76146ff61d7cc614513d622bb215.file.tag.html.php on line 258
手机页面
收藏网站 回到头部