数据库的数据挖掘概述(一)

2016-01-29 16:17 5 1 收藏

数据库的数据挖掘概述(一),数据库的数据挖掘概述(一)

【 tulaoshi.com - SQLServer 】

  随着数据库技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大,在大量的数据背后隐藏着许多重要的信息,如果能把这些信息从数据库中抽取出来,将为公司创造很多潜在的利润,而这种从海量数据库中挖掘信息的技术,就称之为数据挖掘。

    数据挖掘工具能够对将来的趋势和行为进行预测,从而很好地支持人们的决策,比如,经过对公司整个数据库系统的分析,数据挖掘工具可以回答诸如“哪个客户对我们公司的邮件推销活动最有可能作出反应,为什么”等类似的问题。有些数据挖掘工具还能够解决一些很消耗人工时间的传统问题,因为它们能够快速地浏览整个数据库,找出一些专家们不易察觉的极有用的信息。

    下文将对数据挖掘的基本技术作一个简单的介绍。

数据挖掘的基础

    数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶
段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟,他们是:

    海量数据搜集
    强大的多处理器计算机
    数据挖掘算法

    商业数据库现在正在以一个空前的速度增长,并且数据仓库正在广泛地应用于各种行业;对计算机硬件性能越来越高的要求,也可以用现在已经成熟的并行多处理机的技术来满足;另外数据挖掘算法经过了这10多年的发展也已经成为一种成熟,稳定,且易于理解和操作的技术。

    从商业数据到商业信息的进化过程中,每一步前进都是建立在上一步的基础上的。见下表。表中我们可以看到,第四步进化是革命性的,因为从用户的角度来看,这一阶段的数据库技术已经可以快速地回答商业上的很多问题了。

进化阶段 商业问题 支持技术 产品厂家 产品特点 数据搜集
(60年代) “过去五年中我的总收入是多少?” 计算机、磁带和磁盘 IBM, CDC 提供历史性的、静态的数据信息 数据访问
(80年代) “在新英格兰的分部去年三月的销售额是多少?” 关系数据库(RDBMS),结构化查询语言(SQL),ODBC Oracle、Sybase、Informix、IBM、Microsoft 在记录级提供历史性的、动态数据信息 数据仓库;决策支持
(90年代) “在新英格兰的分部去年三月的销售额是多少?波士顿据此可得出什么结论?” 联机分析处理(OLAP)、多维数据库、数据仓库 Pilot、Comshare、Arbor、Cognos、Microstrategy 在各种层次上提供回溯的、动态的数据信息 数据挖掘
(正在流行) “下个月波士顿的销售会怎么样?为什么?” 高级算法、多处理器计算机、海量数据库 Pilot、
Lockheed、IBM、SGI、其他初创公司 提供预测性的信息

表一、数据挖掘的进化历程。

    数据挖掘的核心模块技术历经了数十年的发展,其中包括数理统计、人工智能、机器学习。今天,这些成熟的技术,加上高性能的关系数据库引擎以及广泛的数据集成,让数据挖掘技术在当前的数据仓库环境中进入了实用的阶段。

数据挖掘的范围

    “数据挖掘”这个名字来源于它有点类似于在山脉中挖掘有价值的矿藏。在商业应用里,它就表现为在大型数据库里面搜索有价值的商业信息。这两种过程都需要对巨量的材料进行详细地过滤,并且需要智能且精确地定位潜在价值的所
在。对于给定了大小的数据库,数据挖掘技术可以用它如下的超能力产生巨大的商业机会:

    自动趋势预测。数据挖掘能自动在大型数据库里面找寻潜在的预测信息。传统上需要很多专家来进行分析的问题,现在可以快速而直接地从数据中间找到答案。一个典型的利用数据挖掘进行预测的例子就是目标营销。数据挖掘工具可以根据过去邮件推销中的大量数据找出其中最有可能对将来的邮件推销作出反应的客户。

    自动探测以前未发现的模式。数据挖掘工具扫描整个数据库并辨认出那些隐藏着的模式,比如通过分析零售数据来辨别出表面上看起来没联系的产品,实际上有很多情况下是一起被售出的情况。

    数据挖掘技术可以让现有的软件和硬件更加自动化,并且可以在升级的或者新开发的平台上执行。当数据挖掘工具运行于高性能的并行处理系统上的时候,它能在数分钟内分析一个超大型的数据库。这种更快的处理速度意味着用户有更多的机会来分析数据,让分析的结果更加准确可靠,并且易于理解。

数据库可以由此拓展深度和广度

    深度上,允许有更多的列存在。以往,在进行较复杂的数据分析

来源:http://www.tulaoshi.com/n/20160129/1498153.html

延伸阅读
标签: MySQL mysql数据库
因工作需要,要将存放在sql server数据库中的数据全部导入到mysql数据库中,在网上搜集相关资料,找到两种方法,现在分别谈谈对他们的看法。 第一种是安装mysql ODBC,利用sql server的导出功能,选择mysql数据源,进行数据的直接导出,这种方法很简便,但是针对实际应用有很多弊端,最主要体现就是数据类型问题,首先,sql server数据库中 的n...
从前面的介绍可以看出,可以为各种类型的数据库管理系统编写VisualBasic前端。事实上,使用ODBC驱 动程序,可以建立与几乎任何数据库管理系统连接的应用程序。这一节中,将介绍可以与VisualBasic数据库应用程序一起使用的几种数据库管理系统。 普通的关系数据库管理系统 普通的关系数据库管理系统(RDBMS)一般是指传统的桌面RDB...
结论:在数据库中研究和实现算法有着相当大的困难,同时也是一种挑战。随着现实世界中业务规则的日益复杂,相应的数据库应用软件实现业务规则需要的算法也日益复杂,把复杂的算法应用在数据库中需要找到一个统一的方式,在熟悉业务规则的前提下,根据数据库的特点和相应的执行命令的能力,找到一种适合数据库批量计算的步骤是解决问题的关...
1、使用SHOW语句找出在服务器上当前存在什么数据库: mysql SHOW DATABASES; +----------+ | Database | +----------+ | mysql | | test | +----------+ 3 rows in set (0.00 sec)  2、创建一个数据库abccs mysql CREATE DATABASE abccs; 注意不同操作系统对大小写的敏感。 3、选择你所创建的数据库...
笔者认为,在创建索引时要做到三个适当,即在适当的表上、适当的列上创建适当数量的索引。虽然这可以通过一句话来概括优化的索引的基本准则,但是要做到这一点的话,需要数据库管理员做出很大的努力。具体的来说,要做到这个三个适当有如下几个要求。 一、 根据表的大小来创建索引。 虽然给表创建索引,可以提高查询的效率。但是数...

经验教程

760

收藏

48
微博分享 QQ分享 QQ空间 手机页面 收藏网站 回到头部