关注图老师设计创意栏目可以让大家能更好的了解电脑,知道有关于电脑的更多有趣教程,今天给大家分享基于John Carmark密码详解教程,希望对大家能有一点小小的帮助。
【 tulaoshi.com - 编程语言 】
有人在Quake III的源代码里面发现这么一段用来求平方根的代码:
/*================SquareRootFloat================*/
float SquareRootFloat(float number) {
long i;
float x, y;
const float f = 1.5F;
x = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f3759df - ( i 1 ); //注意这一行
y = * ( float * ) &i;
y = y * ( f - ( x * y * y ) );
y = y * ( f - ( x * y * y ) );
return number * y;
}
x5f3759df? 这是个什么东西? 学过数值分析就知道,算法里面求平方根一般采用
的是无限逼近的方法,比如牛顿迭代法,抱歉当年我数值分析学的太烂,也讲不清楚
。简单来说比如求5的平方根,选一个猜测值比如2,那么我们可以这么算
/2 = 2.5; 2.5+2/2 = 2.25; 5/2.25 = xxx; 2.25+xxx/2 = xxxx ...
这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的
。而卡马克的不同之处在于,他选择了一个神秘的猜测值0x5f3759df作为起始,使得
整个逼近过程收敛速度暴涨,对于Quake III所要求的精度10的负三次方,只需要一
次迭代就能够得到结果。
好吧,如果这还不算牛b,接着看。
(本文来源于图老师网站,更多请访问http://www.tulaoshi.com/bianchengyuyan/)普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的
这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个
最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?
传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始
值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是
卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。
最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数
字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴
力得出的数字是0x5f375a86。
Lomont为此写下一篇论文,"Fast Inverse Square Root"。
我把这个函数用C#就行了一下改写:
代码如下:
using System;
using System.Collections.Generic;
using System.Text;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Carmark's method:");
Console.WriteLine(SquareRootFloat(3.0f).ToString());
Console.WriteLine("Use Math.Sqrt() method:");
Console.WriteLine(((float)Math.Sqrt(3.0)).ToString());
Console.Read();
}
private static float SquareRootFloat(float number)
{
long i;
float x, y;
const float f = 1.5F;
x = number * 0.5F;
y = number;
unsafe
{
i = * ( long * ) &y;
i = 0x5f3759df - ( i 1 ); //注意这一行
y = * ( float * ) &i;
}
y = y * ( f - ( x * y * y ) );
y = y * ( f - ( x * y * y ) );
return number * y;
}
}
}
第32、33行用了两次牛顿迭代法,以达到一定的精度,当然你也可以自己控制精度,求出来的是y的平方根的倒数,所以最后返回为number*y.
SquareRootFloat函数最关键的一句就是 i=0x5f3759df-(i1);
以下是对它的部分解释:
牛顿迭代法最关键的地方在于估计第一个近似根。如果该近似根与真根足够靠近的话,那么只需要少数几次迭代,就可以得到满意的解。
接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:
i = 0x5f3759df - (i 1); // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的:float类型的数据在32位系统上是这样表示的。
(本文来源于图老师网站,更多请访问http://www.tulaoshi.com/bianchengyuyan/)bits:31 30 ... 031:符号位30-23:共8位,保存指数(E)22-0:共23位,保存尾数(M)
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^(-E/2)。现在就十分清晰了。语句i1其工作就是将指数除以2,实现2^(E/2)的部分。而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。
来源:http://www.tulaoshi.com/n/20160219/1592377.html
看过《基于John Carmark密码详解》的人还看了以下文章 更多>>