基于C中一个行压缩图的简单实现代码

2016-02-19 09:54 4 1 收藏

下面这个基于C中一个行压缩图的简单实现代码教程由图老师小编精心推荐选出,过程简单易学超容易上手,喜欢就要赶紧get起来哦!

【 tulaoshi.com - 编程语言 】

首先简单说一下什么是行压缩图,其实严格意义上应该是行压缩矩阵。正常情况下,矩阵是用二维数组简单存储的,但是如果是稀疏矩阵,也就是零很多的时候,这样比较浪费空间。所以就有各种节省空间的存储方式,三元组存储就是其中一种。

什么是三元组呢?一个三元组就是(row,col,value),这样把所有不为零的值组成一个向量。这种存储方式比二维数组节省了不少空间,当然还可以进一步节省,因为三元组里面row或者col重复存储了,一行或者一列存一次就行了,按这种思路走下去就是行压缩存储了。

那具体什么是行压缩存储呢?行压缩存储的思想就是,把所有不为零的值按行访问的顺序组成一个向量,然后再把每一行值不为0的列的下标存下来,这个两个向量的大小和稀疏矩阵中不为0的值得个数相同,当然要实现对行压缩矩阵的访问,还要把每一行的不为0的列的下标在第二个向量中开始的位置存下来,有人把这个叫做指针。有了这三个向量就可以实现对矩阵实现高效的按行访问了。行压缩存储比三元组优秀的不仅是空间的压缩,还有就是行访问时的高效。三元组如果是有序的,可以二分查找来访问一行,但是行压缩存储按行访问时的时间复杂度是常数级的。 大家可以参考下面这个行压缩矩阵示意图:

可能你会有疑问,你明明实现的行压缩图,怎么扯了这么多行压缩矩阵呢?其实图和矩阵是等价的,矩阵的一行可以看做是图一个节点的出边,矩阵的一列可以看做图一个节点的入边。当然这里需要满足两个条件:第一个就是图节点编号必须是从0或者1开始的连续数值(这个可以通过对图的节点做一次映射解决),第二个就是图必须至少是弱连通的(非连通图可以拆成连图片)。实现了稀疏矩阵的高效存储访问,也就实现了图的高效存储访问。

(本文来源于图老师网站,更多请访问http://www.tulaoshi.com/bianchengyuyan/)

下面来说一下,我的实现。我的实现跟经典的行压缩矩阵有两个不同:第一个就是经典的行压缩矩阵没有考虑一行全为0的情况,我对这种情况做了处理(之所以处理当然不是因为我无聊,而是因为有这个需求)。第二个就是经典的行压缩图对按列访问比较慢(当然是相对于按行访问的速度而言),对行压缩图按列访问时,时间复杂度是线性的。我也对这种情况做了处理。

这里简单说一下我的思路:

第一个问题,我是通过将所有指针默认设为-1,即表示该行可能全为0,只有当有非零值时才设置为其正确的指针。当然访问时也要做相应的处理。

第二个问题,我是这样解决的。我按列压缩存储的方式,存了一份每一列不为0的行下标,以及每一列不为0的行下标开始的位置。这样我的实现中就多了两个向量,浪费了存储空间,但是提高了按列访问时的效率。

好了,talk is cheap,show me the code。下面是我的代码(可能有错,我只做了简单的测试)

利用边向量构造压缩图
代码如下:

/*
 * buildGraph 利用边向量 构造压缩图
 * 对边分别按第一个顶点、第二个顶点排序
 * 然后分别按行压缩图和列压缩图构造行、列索引和指针
 * 全零行和全零列,指针置为-1
 */
    private void buildGraph(VectorEdge edges) {
        int edgeSize = edges.size();
        weight = new VectorFloat(edgeSize);
        rowIndex = new VectorInteger(edgeSize);
        rowPtr = new VectorInteger(nodeCount + 1);
        colIndex = new VectorInteger(edgeSize);
        colPtr = new VectorInteger(nodeCount + 1);
        // set default value as -1
        for (int i = 0; i nodeCount; ++i) {
            rowPtr.add(-1);
            colPtr.add(-1);
        }
        rowPtr.add(edges.size());
        colPtr.add(edges.size());

        // sort the edge based on first node
        EdgeBasedOnFirstNodeComparator cmp = new EdgeBasedOnFirstNodeComparator();
        Collections.sort(edges, cmp);
        // build row index and pointer
        int curNode = edges.elementAt(0).getFirstNode();
        int curPtr = 0;
        for (int i = 0; i edgeSize; ++i) {
            Edge e = edges.elementAt(i);
            // System.out.println("curNode" + curNode + "firstNode: "
            // + e.getFirstNode());
            weight.add(e.getWeight());
            rowIndex.add(e.getSecondNode());
            if (curNode != e.getFirstNode()) {
                rowPtr.set(curNode, curPtr);
                curNode = e.getFirstNode();
                curPtr = i;
            }

        }
        rowPtr.set(curNode, curPtr);
        // sort the edge based on second node
        EdgeBasedOnSecondNodeComparator cmp2 = new EdgeBasedOnSecondNodeComparator();
        Collections.sort(edges, cmp2);
        // build column index and pointer
        curNode = edges.elementAt(0).getSecondNode();
        curPtr = 0;
        for (int i = 0; i edgeSize; ++i) {
            Edge e = edges.elementAt(i);
            colIndex.add(e.getFirstNode());
            if (curNode != e.getSecondNode()) {
                colPtr.set(curNode, curPtr);
                curNode = e.getSecondNode();
                curPtr = i;
            }

        }
        colPtr.set(curNode, curPtr);
    }

代码如下:

获得一个节点的出边
/*
 * getOutEdges 返回结点所有的出边(即所有由结点指出的边)
 *
 * @param node 要查找的结点
 *
 * @return 返回结点所有的出边组成的向量
 */
@Override
public VectorEdge getOutEdges(int node) {
    VectorEdge res = new VectorEdge();
    int startIndex = getStartIndex(node, true);
    if (startIndex == -1) {
        // 没有出边的点
        return null;
    }
    int endIndex = getEndIndex(node, true);
    float value;
    Edge e;
    int outNode;
    for (int index = startIndex; index endIndex; ++index) {
        value = weight.elementAt(index);
        outNode = rowIndex.elementAt(index);
        e = new Edge(node, outNode, value);
        res.add(e);
    }
    return res;
}

获得一个节点的入边
?
/*
 * getInEdges 获取结点所有的入边(即所有指向结点的边)
 *
 * @param node 要查找的结点
 *
 * @return 返回所有由结点入边组成的向量
 */
@Override
public VectorEdge getInEdges(int node) {
    VectorEdge res = new VectorEdge();
    int startIndex = getStartIndex(node, false);
    // 没有入边的点
    if (startIndex == -1) {
        return null;
    }
    int endIndex = getEndIndex(node, false);
    float value;
    Edge e;
    int inNode;
    for (int index = startIndex; index endIndex; ++index) {
        inNode = colIndex.elementAt(index);
        value = getWeight(inNode, node);
        e = new Edge(inNode, node, value);
        res.add(e);
    }
    return res;
}

这里访问方式就跟按行访问不一样了,行访问时,直接读weight向量里面对应的值就行了,这里不行,应该weight向量是按行访问顺序存的。我的解决方法,获取入节点,然后对整个节点对按行访问获得对应值。这样虽然绕了一下,但是对于稀疏图来说,基本上也是常数级的。下面是getWeight的代码
代码如下:

/*
     * getWeight 获得特定边的weight
     */
    private float getWeight(int row, int col) {
        int startIndex = getStartIndex(row, true);
        if(startIndex==-1)
            return 0;
        int endIndex = getEndIndex(row, true);
        for (int i = startIndex; i endIndex; ++i) {
            if (rowIndex.elementAt(i) == col)
                return weight.elementAt(i);
        }
        return 0;
    }

最后是对行或者列全0时的特殊处理,这里处理,体现在从指针向量获取开始和结束位置的函数上
代码如下:

/*
 * getStartIndex 获取特定顶点的开始索引
 */
    private int getStartIndex(int node, boolean direction) {
        // true : out edge
        if (direction)
            return rowPtr.elementAt(node);
        else
            return colPtr.elementAt(node);
    }

(本文来源于图老师网站,更多请访问http://www.tulaoshi.com/bianchengyuyan/)

 
?
/*
 * getEndIndex 获取特定顶点的结束索引
 */
    private int getEndIndex(int node, boolean direction) {
        // true:out edge
        if (direction) {
            int i = 1;
            while ((node + i) nodeCount) {
                if (rowPtr.elementAt(node + i) != -1)
                    return rowPtr.elementAt(node + i);
                else
                    ++i;
            }
            return rowPtr.elementAt(nodeCount);
        } else {
            int i = 1;
            while ((node + i) nodeCount) {
                if (colPtr.elementAt(node + i) != -1)
                    return colPtr.elementAt(node + i);
                else
                    ++i;
            }
            return colPtr.elementAt(nodeCount);
        }
    }

这里我只实现了两个最简单的功能,获取入边和出边。一方面是因为,对于我做的东西,这两个函数就够了,另一方面,对于一个图来说,有这两个函数,其他函数都可以相应实现。

来源:http://www.tulaoshi.com/n/20160219/1592595.html

延伸阅读
用于内存管理的malloc与free这对函数,对于使用C语言的程序员应该很熟悉。前段时间听说有的IT公司以“实现一个简单功能的malloc”作为面试题,正好最近在复习K&R,上面有所介绍,因此花了些时间仔细研究了一下。毕竟把题目做出来是次要的,了解实现思想、提升技术才是主要的。本文主要是对malloc与free实现思路的介绍,蓝色部分文字是在个...
先引用using System.Runtime.InteropServices; 的命名空间, 然后在合适的位置加上如下代码就OK。。注意:Form1_Load和Form1_FormClosed不能直接copy哦~ 代码如下: [DllImport("user32")] public static extern bool RegisterHotKey(IntPtr hWnd,int id,uint control,Keys vk ); //注册热键的api [DllImport("user32")] public static e...
可以先猜测一个数,比如1.5,然后用2除以这个数字。如果我们猜对了,则除法的结果必然与我们猜测的数字相同。我们猜测的越准确,除法的结果与猜测的数字就越接近。 根据这个原理,只要我们每次取猜测数和试除反馈数的中间值作为新的猜测数,肯定更接近答案!这种计算方法叫做“迭代法”。 代码如下:  double n = 2;  double a = 0...
本文给出一种C++无锁队列的实现代码,主要用于一个线程读取数据另外一个线程写数据 代码如下: #ifndef LOCK_FREE_QUEUE_H_ #define LOCK_FREE_QUEUE_H_ //不加锁队列,适合一个线程读取,一个线程写 #include list template typename T class LockFreeQueue {     public:         LockFr...
代码如下所示: 代码如下: #include stdio.h int main() {  // 主要是找到行和列的关系    int i,j,k;      for(i=0;i4;i++)  //做为行循环    {     for(j=0;j=2-i;j++)  // 打印一行中的空白      printf(" ");     for(k=...

经验教程

158

收藏

81
微博分享 QQ分享 QQ空间 手机页面 收藏网站 回到头部