拓扑异构酶有哪些类型,说起拓扑异构酶,这是一种比较陌生的物质,其实这种物质对于我们的身体有着非常重要的作用。那么你知道拓扑异构酶有哪些类型呢,拓扑异构酶的化学反应是什么呢,它的作用又是什么呢?下面我们就一起来了解一下。
【 tulaoshi.com - 拓扑异构酶 】
说起拓扑异构酶,这是一种比较陌生的物质,其实这种物质对于我们的身体有着非常重要的作用。那么你知道拓扑异构酶有哪些类型呢,拓扑异构酶的化学反应是什么呢,它的作用又是什么呢?下面我们就一起来了解一下。
DNA拓扑异构酶是存在于细胞核内的一类酶,他们能够催化DNA链的断裂和结合,从而控制DNA的拓扑状态,拓扑异构酶参与了超螺旋结构模板的调节。主要存在两种哺乳动物拓扑异构酶。DNA拓扑异构酶I通过形成短暂的单链裂解-结合循环,催化DNA复制的拓扑异构状态的变化;相反,拓扑异构酶II通过引起瞬间双链酶桥的断裂,然后打通和再封闭,以改变DNA的拓扑状态。
哺乳动物拓扑异构酶II又可以分为αII型和βII型。拓扑异构酶毒素类药物的抗肿瘤活性与其对酶-DNA可分裂复合物的稳定性相关。这类药物通过稳定酶-DNA可分裂复合物,有效地将酶转换成纤维毒素。
分类
可分为两类,一类叫拓扑异构酶I,一类叫拓扑异构酶II。拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。E.coliDNA拓扑异构酶I又称ω蛋白,大白鼠肝DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme)。拓扑异构酶II能同时断裂并连接双股DNA链.它们通常需要能量辅因子ATP。
在拓扑异构酶II中又可以分为两个亚类,一个亚类是DNA旋转酶(DNA gyrase),其主要功能为引入负超螺旋,在DNA复制中起十分重要的作用。迄今为止,只有在原核生物中才发现DNA旋转酶.另一个亚类是转变超螺旋DNA(包括正超螺旋和负超螺旋)成为没有超螺旋的松弛形式(relaxed form)。这一反应虽然是热力学上有利的方向,但不知道为什么它们仍然像DNA旋转酶一样需要ATP,这可能与恢复酶的构象有关。这一类酶在原核生物和真核生物中都有发现。
第一类
DNA拓扑异构酶能催化的反应很多,DNA拓扑异构酶I对单链DNA的亲和力要比双链高得多,这正是它识别负超螺旋DNA的分子基础,因为负超螺旋DNA常常会有一定程度的单链区。负超螺旋越高,DNA拓扑异构酶I作用越快。现已知道,生物体内负超螺旋稳定在5%左右,低了不行,高了也不行。
生物体通过拓扑异构酶1和II的相反作用而使负超螺旋达到一个稳定状态。现已发现,编码E.coli拓扑异构酶I的基因topA发生突变,则会引起旋转酶基因的代偿性突变;否则,负超螺旋增高,细胞生活能力降低。拓扑异构酶I作用的碱基序列特异性不高,但切点一定在C的下游方向4个碱基(包括C本身)的位置。在将DNA单链切断后,拓扑异构酶I连接于切口的5端,并贮藏了水解磷酸二脂键的能量用以连接切口,因而拓扑异构酶I的作用不需能量供应。
此外.拓扑异构酶I还能促进两个单链环的复性,其作用是解除复性过程所产生的链环数的负值压力,以使复性过程进行到底。如果在一个单链环上一个部位切断,而使另一部位绕过切口.则可产生三叶结结构分子。如果有两个双链环,其中一个有一个切刻,拓扑异构酶1则可以将切刻对面的一条链切断,伎完整的双链环套进去,再连接起来而成为环连体分子。
第二类
大肠杆菌的拓扑异构酶II(gyrase)除了引入负超螺旋以外.还具有形成或拆开双链DNA环连体和成结分子的能力。II类拓扑异构酶没有碱基序列特异性,它们可以和任何相交的两对双链DNA结合。DNA旋转酶有两个α亚基和两个β亚基。α亚基约105KDa,为gyrA基因所编码,具有磷酸二脂酶活性,可为萘啶酮酸(nalidixic acid)所抑制。A亚基约95KD,为graB基因所编码,具有ATP酶活性,可为新生霉素所抑制。
这两种药物均可抑制野生型大肠杆菌的DNA复制。可见DNA旋转酶为E.coli的复制所不可缺少的。在切断一条DNA双链后,两个a亚基各结合于切口的一个5'端,并贮藏了水解磷酸二酯键而获得的能量,由于该酶的整体性,因而DNA链的四个断头并无任意旋转的可能性。由于酶的别构效应,使完整的双链穿过切口,然后再重新形成磷酸二酯键。
β亚基的功能在于水解ATP以使酶分子恢复原来的构象,以便进行下一轮反应。这一点可以用ATP的同系物β,γ-亚氨基ATP代替ATP而得到证实。因为这一同系物不能被DNA旋转酶所水解,但它确能促进第一轮拓扑异构反应,使负超螺旋增加,而妨碍以后进一步的拓扑异构反应。
化学反应
DNA拓扑异构酶催化反应
(本文来源于图老师网站,更多请访问http://www.tulaoshi.com)其反应本质是先切断DNA的磷酸二脂键,改变DNA的链环数之后再连接之,兼具DNA内切酶和DNA连接酶的功能.然而它们并不能连接事先已经存在的断裂DNA,也就是说,其断裂反应与连接反应是相互耦联的。
除了DNA拓扑异构酶可以产生异构变化以外,很多能够嵌入相邻碱基之间影响碱基堆集作用的试剂,特别是片状的染料分子.也能改变DNA的拓扑状态,最明显的例子就是溴化乙锭。例如以SV40的CCC分子与溴化乙锭的结合试验为例,当没有染料时,此DNA为负超螺旋,具有较高的沉降常数(21S);当加入染料分子与核苷酸之比为0.05时,沉降数降至l6S,此时DNA为没有超螺旋的松弛形式;当染料分子和核苷酸的比值增加到0.09时,沉降常数又上升到大约21S,此时DNA分子为正超螺旋。
不过要注意的是,溴化乙锭并没有改变Lk值,只不过是由溴化乙锭分子的嵌入,增加了局部DNA二级结构的紧缠状态。因而,随着嵌入染料分子数的增多,起初表现为负超螺旋的减少与消失,随后便是正超螺旋的增加。这与单链DNA结合蛋白促进负超螺旋转变为泡状结构的情况是类似的。
拓扑异构酶
通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。DNA促旋酶。
DNA拓扑异构酶
为催化DNA拓扑学异构体相互转变的酶之总称。催化DNA链断开和结合的偶联反应,为了分析体外反应机制,用环状DNA为底物。在闭环状双链DNA的拓扑学转变中,要暂时的将DNA的一个链或两个链切断,根据异构体化的方式而分为二个型。切断一个链而改变拓扑结构的称为Ⅰ型拓扑异构酶,通过切断二个链来进行的称为Ⅱ型拓扑异构酶。属于Ⅰ型的拓扑异构酶,有大肠杆菌的ω蛋白及各种真核细胞中存在的切断-结合酶。
Ⅱ型拓扑异构酶,有存在于细菌中的DNA促旋酶、噬菌体T4的拓扑异构酶Ⅱ以及真核细胞中依赖ATP的拓扑异构酶Ⅱ等。另外,噬菌体λ的irt基因产物和噬菌体φX174的基因A的产物等也具有切断—结合酶的活性,可认为是拓扑异构酶之一种。Ⅰ型拓扑异构酶不需要ATP的能量而催化异构体化,作为反应的中间产物,在原核生物来说是游离型的5′-OH末端扣3′-磷酸末端与酶形成共价键,而真核生物是3′-OH末端5′-磷酸末端与酶形成共价键。此酯键中所贮存的能量,可能在切断端的再结合上起着作用。
使超螺旋DNA在每一切断—结合反应中,使L数发生一种变化,即松弛。将互补的单链环状DNA转变成具有螺旋结构的双链环状DNA,使单链DNA打结或解结。另外在二个环状双链DNA一个分子的一个链切断时,形成链环状二聚体的分子。
在Ⅱ型拓扑异构酶中,DNA促旋酶可单独催化闭环状DNA产生超螺旋,这是独特的。其它二个型的酶,除可使超螺旋松弛也需要ATP的能量外,还可催化促旋酶的催化反应。真核细胞的拓扑异构酶Ⅰ,参与核小体的形成,细菌的ω蛋白参与转录和某种转位子的插入。促旋酶和T4拓扑异构酶Ⅱ参与DNA的复制和转录过程。
DNA拓扑异构酶I催化4种反应
①超螺旋的松弛;
②绳结(knot)的形成;
③环状双链分子的形成;
④环状双链分子的连接。
作用
Ⅱ型拓扑异构酶
Ⅱ型拓扑异构酶巧妙地执行了打开DNA双螺旋的过程。它将DNA的一个双螺旋结构切开,并让另一个螺旋从缺口处穿过,在此之后一个双螺旋便被打开。
(本文来源于图老师网站,更多请访问http://www.tulaoshi.com)图老师小结:看了上面的内容,大家是不是对拓扑异构酶有了初步的了解呢,对于拓扑异构酶的作用是不是有了一定的了解呢。因此,如果你想要了解dna聚合酶的话,则可以多多以上内容哦,相信对你了解dna聚合酶会有所帮助的。
来源:http://www.tulaoshi.com/n/20160328/2021349.html