换一批

设计理论

设计理论是有目的性、策划性的;它把科技与艺术结合在一起,是商业社会是新手法。设计理论没有完整的概念,在设计时需精益求精,不断进步、不断完善,每一次都是挑站自己,如今设计的领域在扩大,这个世界对于设计理论的要求也越来越高。

经验文章 概述

《设计理论》是由高等教育出版社出版编著的实体书。《设计理论》是基于一个研究生课程的设计是在对2001南开unversityin弹簧组合中心给出lectare笔记。讲稿散落在专家的学生。

基本信息

书名

设计理论

ISBN

9787040241648

页数

221

出版社

高等教育出版社

装帧

平装

开本

16

图书信息

出版社: 高等教育出版社; 第1版 (2009年7月1日)

外文书名: Design Theory

丛书名: 组合数学丛书

平装: 221页

正文语种: 英语

开本: 16

ISBN: 9787040241648

条形码: 9787040241648

尺寸: 23.4 x 15.4 x 2 cm

重量: 522 g

内容简介

The present book is based on the lectare notes of a graduate course DesignTheory which was given at the Center for Combinatorics of Nankai Unversityin spring of 2001. The lecture notes were scattered over the expertsand students.

目录

Preface

1.BIBDs

1.1 Definition and Fundamental Properties of BIBDs

1.2 Isomorphisms and Automorphisms

1.3 Constructions of New BIBDs from Old Ones

1.4 Exercises

2.Symmetric BIBDs

2.1 Definition and Fundamental Properties

2.2 Bruck-Ryser-Chowla Theorem

2.3 Finite Projective Planes as Symmetric BIBDs

2.4 Difference Sets and Symmetric BIBDs

2.5 Hadamard Matrices and Symmetric BIBDs

2.6 Derived and Residual BIBDs

2.7 Exercises

3.Resolvable BIBDs

3.1 Definitions and Examples

3.2 Finite Affine Planes

3.3 Properties of Resolvable BIBDs

3.4 Exercises

4.Orthogonal Latin Squares

4.1 Orthogonal Latin Squares

4.2 Mutually Orthogonal Latin Squares

4.3 Singular Direct Product of Latin Squares

4.4 Sum Composition of Latin Squares

4.5 Orthogonal Arrays

4.6 Transversal Designs

4.7 Exercises

5.Pairwise Balanced Designs;Group Divisible Designs

5.1 Pairwise Balanced Designs

5.2 Group Divisible Designs

5.3 Closedness of Some Sets of Positive Integers

5.4 Exercises

6.Construction of Some Families of BIBDs

6.1 Steiner Triple Systems

6.2 Cyclic Steiner Triple Systems

6.3 Kirkman Triple Systems

6.4 Triple Systems

6.5 Biplanes

6.6 Exercises

7.t-Designs

7.1 Definition and Fundamental Properties of t-Designs

7.2 Restriction and Extension

7.3 Extendable SBIBDs and Hadamard 3-Designs

7.4 Finite Inversive Planes

7.5 Exercises

8.Steiner Systems

8.1 Steiner Systems

8.2 Some Designs from Hadamard 2-Designs and 3-Designs

8.3 Steiner Systems S(4;11,5) and S(5;12,6)

8.4 Binary Codes

8.5 Binary Golay Codes and Steiner Systems S(4;23,7) and S(5;24,8)

8.6 Exercises

9.Association Schemes and PBIBDs

9.1 Association Schemes

9.2 PBIBDs

9.3 Association Schemes (Continued)

9.4 Exercises

References

相关文章

手机页面
收藏网站 回到头部